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ON THE POWER FUNCTIONS OF TEST STATISTICS
IN ORDER RESTRICTED INFERENCE

Hari Mukerjee, Tim Robertson, and F. T. Wright —~~ = = " 4

SUMMARY

" We study the power functions of both the 1ikelihood ratio and con-
trast statistics for detecting a totally ordered trend in a collection of
means of normal populations. Monotonicity properties are found and both
radial limits and limits along lines parallel to the cone of points satis-
fying the trend are examined. An optimal contrast test for testing a trend

as a null hypothesis is derived.

AMS 1980 subject classifications: Primary 62F03; Secondary 62F04.

Key words and phrases: Order restricted tests, isotonic inference, power,

likelihood ratio tests, contrast tests.
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INTRODUCTION. We consider the powers of statistical tests for detecting

a trend in a collection of population parameters. The statistical litera-
ture contains a number of such tests and a detailed summary of this research
up to about 1971 is given in Barlow et al. (1972). More recent summaries
are given in Bartholomew (1983), Lee (1983) and Robertson (1984). We
restrict our attention to the case in which the parameters, Myskos e ety
are the means of normal populations and the trend restriction requires them
to be totally ordered. To be specific we consider the trend H1: M < Mo

< -0 g My - One approach to detecting such a trend is to test homogeneity, j
HO: M S My T ter T, versus H]-HO, i.e., H1 holds with M < My
(cf. Bartholomew (1959 a,b; 1961)). Even in the case of normal means the
results concerning the powers of these restricted tests are very exiguous
and consist primarily of comparisons with the powers of other tests, such

as the unrestricted tests of H, versus Hﬁ: My a M for some i # j.

0
In fact, as far as we can determine, the first mention of the fact that
Bartholomew's tests are unbiased occurs in Robertson and Wright (1982).
The biases of other restricted tests are examined in Dykstra and Robertson
(1983).

Assuming independent random samples from normal populations,

Bartholomew (1959 a,b; 1961) studied the likelihood ratio tests (LRTs)

for H0 versus HT'HO assuming in one case that the population variances

are known and in the other that they are unknown but equal (partially
ordered trends were also considered). We focus attention on the case of

known variances. Results concerning the unknown variances case follow by

LRGN SIRENENERENOAS
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conditioning arguments in the last section. Implementation of Bartholomew's

test procedures can be difficult for k > 5 if the so-called weights are
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not equal. (For the known variances case, the weights are the precisions,
ni/cf, of the sample means as estimates of the population means.) This
difficulty is mainly due to the fact that the level probabilities involved
in the null hypothesis distribution of the test statistic are extremely
difficult to compute in such cases. This theory is discussed at length in
Chapter 3 of Barlow et al. (1972). Robertson and Wright (1983) proposed an
approximation for the level probabilities for the case of total order and
Pillers et al. (1984) gives a computer routine for implementing this approx-
imation.

Partly because of the difficulty involved in applying Bartholomew's
procedures, several researchers, including Abelson and Tukey (1963) and
Schaafsma and Smid (1966), considered tests based upon contrasts (cf. Sec-
tion 4.2 of Barlow et al. (1972)). Denoting the sample means by 7},

1 <1 < k, these contrast tests are based upon statistics of the form
TC = Z:=] C1¥} where ¢ = (c],c2,°~-,ck) is a vector of predetermined
constants (Z:=] c; = 0). One attraction of these constrasts is the fact
that their distribution at any point . = (“1’”2""’“k) € Rk is normal.

With po,v € RK

fixed (Z§=] v; = 0), the uniformly most powerful (UMP)
test of H&: W = My versus Ha: n € {u04-bv; b > 0] rejects Ha for

large values of Tv (use the Neyman-Pearson Theorem and note that this

test is UMP for fixed b > 0). Since this test does not depend on “OGHO it
is not surprising that contrast tests are very powerful in some subregion

of the alternative. However, even for moderate k, there are other sub-

regions of the alternative where the power of the contrast test does not

compare favorably with the power of Bartholomew's LRT. While the LRT is

not most powerful at any particular point, it does maintain a more
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uniformly reasonable power over all of H]. One explanation of this fact

is given in Theorem 4.3 of Barlow et al. (1972), which can be interpreted
to say that the LRT is based on an "adaptive" contrast statistic. In other
words, the parameters are estimated from the data and then the contrast
coefficients are chosen so that the test has a relatively high power at the
estimated point.

In the references cited earlier, Abelson and Tukey (1963) and
Schaafsma and Smid (1966) derived optimal contrast tests. In the former
they obtained the contrast coefficients which maximize the minimum power
over all points equidistant from H0 and in the latter those that minimize
the maximum loss of power as compared to the most powerful test in a
restricted class of procedures. The powers of these optimal contrast tests
are compared with that of the LRT in Section 4.2 of Barlow et al. (1972).
Their conclusion is that, while it is difficult to improve on the LRT, for
a total order and small k these contrast tests provide viable alterna-
tives to the LRT.

In the above approach to detecting a trend the hypothesis of homo-
geneity is a "dummy" hypothesis. Control of the a level provides pro-
tection against confirming the trend when it is not present. Robertson and
Wegman (1978) and Robertson (1978) studied LR procedures for testing a
trend as a null hypothesis. The a-level of these tests controls the
probability of denying the trend when it is present. The null hypothesis
distributions of the LRT statistics involve the same level probabilities
that complicate the use of Bartholomew's test. In Section 4 we derive an

optimal contrast test for H] versus Hz: My > My for some 1.




In Section 3, we study the power functions of the LRTs for testing H0

versus H,-H, and for H1 versus H2. The power functions for the latter

1°0
tests are more complicated and, in a sense, more interesting. Some prelim-

inary results for studying the powers of the LRTs are developed in Section
2. The competing contrast tests are discussed in Section 4.

Throughout this paper Yj,ié,---,ik denote the sample means of inde-

pendent random samples with Y} ~ "(“i’°§/ni)’ n, the size of the ith

sample, and cf the variance of the ilﬁ population. Assume that the

variances are known and set W, = ni/c$ for i =1,2,---,k. Llet HO and

H] denote the hypotheses specified earlier as well as the corresponding sub-

sets in Rk. The set, HO’ is a subspace and H] is a closed, convex

cone. Let (-,-)w denote the inner product on Rk defined by

(x,y) = Z:=] wix;y; and let “-”w denote the corresponding norm.

i
Bartholomew's test of HO versus H]-H0 rejects HO for large values of

k —4\2 - a 2
(1.1) Ty =-2Mna- Zi=] wi(“i-u) = Hu-ueknw

v K

where A denotes the likelihood ratio, i = Z$=] wiXi/Zi=] Wos o is a

k-dimensional vector of ones and u = (E&,ﬁé,---,ﬁk) minimizes

Z§=] wi(gi-)_('i)2 subject to g € H,. In other words, o is the projection

of X = (X},Yé,---,ik) onto H1 with respect to the distance d(x,y)

= ix-yll,- We will also denote this projection by E, (X|H;). With the
closed, convex cone H] n{x: Z:=1 XWs = 0} denoted by CO]’ Theorem 1.5
of Barlow et al. (1972) can be used to show that Ew(ﬂ Cop) = Ewm Hy) - 8

- 2 .
and so Ty, = UEw(X[ C01)Hw. Therefore, an acceptance region for T,, can

01
. 2
be written as {x € R : [IE, (x| Cor)lly = t3 for some t >0.

The LRT of H] versus H2 rejects for large values of
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(1.2) T, =-21nAs= E';q wi(Yi-E,-)2= IF-£, (K [ HIG-

If C]2 denotes the dual of H] (also called the polar or conjugate of
H]), which is a closed convex cone whose definition is given in the next
section, then Theorem 1.5 of Barlow et al. (1972) shows that Ew(x[ CIZ)
= x- Ew(x[ Hi), and so Tip = HEW(XT C]Z)“ﬁ. The acceptance regions for
T12 are of the form {x € Rk: “Ew(x[ C]Z)”ﬁ <t} with t>0.

In Section 3 we consider the question of unbiasedness for TO] and
T]2 as well as the radial behavior of their power functions, that is,
their behavior on the sets {&u; &6 = 0} for various u. The behavior of
these power functions in other directions is also discussed. Robertson and
Wright (1982) considered the relation on Rk, X<y provided y-x € H].
They showed that TO] and its power function are isotone, and T]2 and its
power function are antitone with respect to <. This implies that if
o€ H], then the power of TO] (T12) is nondecreasing (nonincreasing) in
6 on {6u : -»< § < ®}. Their results concerning the stronger relation
<< show that the power of TO] is monotone in a larger set of directions,
but these techniques do not apply to T]2 because it is not antitone with
respect to <<. However, because of the strong similarities in the accept-
ance regions for the tests TO] and T12’ one might conjecture that le

is also monotone in this larger set of directions. Using the geometric

arguments of Section 2, this is shown to be the case.
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%; 2. SOME PROBABILITY INEQUALITIES. The probability inequalities derived
in this section will be used in the discussion of the montonicity of the

power functions of T and T12‘ Using the techniques in Bartholomew

01
;; (1961), one can, at least in principle, obtain analytic expressions for
these power functions in terms of several multiple integrals, but, as func-
tions of the distance of a mean vector from H0 and its direction, they
- are extremely intractable even in the case of equal weights and k = 3.
(See Section 3 for further discussion.) We have resorted to geometric
E’ arguments involving integrals of symmetric unimodal densities over convex
. sets that have certain symmetry properties. In a sense, the results
obtained are generalizations of Anderson's (1955) work on similar integrals
over symmetric (about the origin) convex sets, but in the present work, the
statistics are projections on closed, convex cones which are not subspaces,
and thus the sets involved have only partial symmetry.

The basic idea is the following. Let Pu(-) denote the n(u,I)
probability distribution on Rk for each u € Rk, and note that
P“(A) = PO(A-H) for all measurable A C-Rk. If A 1is the acceptance
region for one of the tests considered here, then A 1is closed and convex.
If S“ is the subspace generated by a mean vector u and S: is the
k

orthogonal complement of Su in R", then, for some directions of u,

it is possible to decompose A into disjoint subsets A’ and A”, with

A’ a closed, convex set symmetric about S: and A” on one side of S:.

o

This will enable us to prove the monotonicity of Pau(A) = PO(A-bp) in
6 2 0 for such directions.
Because we anticipate the application of the results of this section

to more general types of cones than those considered in this paper, and




because we believe the results concerning projections on closed, convex
cones in a real Hilbert space are of interest in themselves, we consider a
more general framework than is needed for this paper.

Let H denote a real Hilbert space with inner product (-,-) and
norm |-. If C is a closed, convex cone in H and x € H, then E(x]C)
will denote the unique projection of x onto C, i.e., E(xl C) is the
unique element of C which minimizes |[/x-y| as y ranges over C. Theorem

7.8 of Barlow et al. (1972) characterizes E(x] C) as follows:

(2.1)  E(x|c)ec, (x-E(x]cC), E(x|[C)) =0, and (x-E(x[C),y) <0
for all y € C.

It follows from (2.1) that E(ax|C) = aE(x[C) for a=0 and x € H,

and that
(2.2)  OGE(x]C)) = (E(x] C).E(x|C)) = [[E(x[ C)® for x €H.

The dual of C, which is denoted by C*, 1is defined by
C* = {x €H: (x,y) =0 for all y € C}. Clearly, C* is a closed, convex

cone and using the definition of C*, (2.1), and (2.2), we see that
*y _ *\nl _ ol 2

(2.3)  E(x]C*) = x-E(x[cC) and [[E(x|C*)[® = {x]“- [[E(x | C)[°.

In the Appendix it is shown that

(2.4)  (¢©)" =c.

Throughout this section C will denote a closed, convex cone in H,

C* its dual, and A the closed set {x € H: [E(x|C)|[ s t} for some t > 0.

For w€H det C ={bu:b=20}, S ={bu:-=<b<=], andlet s: be

i
i
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the orthogonal complement of Su'

We repeat for the reader's convenience a result from Robertson and

Wegman (1978) which will be used several times in the sequel.

Lemma 2.1. If x € C, then for any y € H, [x+y-E(x+y| C)||
< jly-E(y| C)} or, equivalently, [E(x+y|C*)|} = [[E(y|C*)].

Next, we state several lemmas which are proved in the Appendix. Let
-D = {-x: x € D}.

Lemma 2.2. Suppose p € CU (-C*). For x €H and 0=<b <2,
(2.8)  [fE(x= bE(x=g | cu)( C)ii = JE(x{ C)]} for all wj € s:.
So, if (u,uo) =0 and y € A-po, then y-bE(y | Cu) € A—uo for 0<b s 2.

Lemma 2.3. For x,y € H,
HECty [ O = [E(xE C+E(y | )] = [[E(x [ Ol + JIE(y [ €.
ysing Lemma 2.3, we see that A is convex.

Lemma 2.4. Let S be a closed subspace of H.
(a) If Sc(C, then (x-E(x|{C),v) =0 and E(x-v]C) =E(x]{C)-v for
all x €H and v €S.

(b) If S<¢C, then E(E(x|[C)[S)=E(x]|S) forall x €H.
(c) If ScC, then E(x|[C)-E(x]S) =E(x]CnsS* forall x €H.
(d) If Cc<S, then E(E(x[S)]C)=E(x]C) for all x €H.

The next result identifies the portion of A that is symmetric about

s*. Define A" tobe {x €A: E(x | Su) = by for some b =20} and B to
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be {x- bE(x]| Su): x €AY, 0<b s 2}.

Theorem 2.5. If u € C U (-C*) and Ho is any vector in H with
_ . . L
(u,uo) =0, then B-uy € A-uy, B-u, is symmetric about Su’ i.e.,

X € B-u, implies x- 2E (x | %4) € B-ty, and B-uy s closed and convex.

Proof. First assume the theorem is true with Mo * 0. Then the first
and the last conclusions follow immediately for arbitrary Ho € H. The
second conclusion follows when (u,uo) = 0 by noting that, when B is
symmetric about S:, X € B-uy implies x#u,- 2E(x+u0[ Su)
= Xx¥ug - 2E(x | su) € B, so that x-2E(x]| s“) € B-uy. Thus it is suffic -t
to prove the theorem for Mg = 0.

For x € A', E(x ] 94) = E(x| S“) and so B< A by Lemma 2.2. If
X € B, then there exists y € A" and b€ [0,2] with x = y-bE(y] Su)'
Thus by the linearity of E(-| Su)’

x- 2E(x[s)) = y- bE(y(su) - 2(1-b)E(y[s,) = y- (2-b)E(y[s) € B.

Next, we show that B 1is closed. Since Su is 1-dimensional it is closed,
and so is S:. Because A+ is the intersection of the closed, convex sets
A and {x € H: E(x]| Su) = by, b 20}, it is closed and convex also. Now

A+

{x-bE(x] s ): x € A", 0= bs< 1}, and if we define

A

{x-bE(x| Su): x €AY, 1sb=<2}, then A" is the reflection of A"
across S:. It is then easily verified that A~ is closed and convex.
Hence, Bv= A* UAT s closed.

Since AT and A” are both convex, to show that B is convex, we

need only show that ax+ (1-a)y € B for O<a<1, x €A n (A)¢ and

y € A7 n (ANC. Now y- 26(y] s.) €B and E(y-2E(y[s )Is ) = -E(ylS))
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implies that y- 2E(y | su) € A", Thus, v = ax+ (1-a)(y- 2E(y]| su)) en’

and v- bE(v | Su) €B for 0<bs2. Now, E(x] S, ) = cu and E(y | Su)
= cu with ¢ >0 and ¢, < 0. Then E(v] S ) = ac - (1-a)cy)u and

V- b(acx- (1-a)cy)u €B forall O0sbs 2. But 0< -2(1-a)cy

< 2(acx- (1-a)cy). Thus
ax+ (1-a)y = v4-2(1-a)cyu = v-[(-2(1-a)cy)/(acx-(l-a)cy)]E(v{SH)GEB,
and the proof is completed,

For the remainder of this section, we take H to be Rk and at first

consider the usual inner product. For p € Rk we let Pu denote the

n{u,1) probability distribution on RK.

k k

Theorem 2.6. If u € R and E 1is a closed, convex set in R~ which

is symmetric about S:, then Pbu(E) is nonincreasing in § for § 2 0.

Proof. We may assume that u # 0 and |[jull = 1. Introduce in RK  an

k

orthonormal coordinate system, so that if x € R° has coordinates

Xyt , th E S =
(x] X, xk) en E(x] u) (

D < R¥,

x],O,-'-,O). Hence, for any measurable

k
= J‘(J[‘)(.)(.].)J‘Hi:Z px;)dx,) = Jop(xq)e(x;)dx,,

= cen . cen 1 - i
where D(x]) L(xz, ,xk). (x],xz, ’Xk) € D} 1is the xy-section of D
and ¢ is the standard normal density. From the symmetry assumption on
E, E(-x]) = E(x]), and because E 1is convex and symmetric, E(ax])
c E(a'xl) for 0s<a’ <a. So, e is symmetric, nonnegative, and non-

decreasing on (-«,0], and

O T e e P e D RNES AT SN T et et et e ~
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P (E) = Po(E-0u) = [gp(x))olx;-8)dx; = [gp(x,+8)e(x, )dx; .
Suppose 0= § < &' . Let
I = Py(E-8u) - Po(E-8") = JTgg(xy+8) - QE(X1+6')]w(X])dX]-
Let ¢ = (6+6’)/2 and b = (§'-6)/2 and note that c = b = 0. Hence,
I = [lgp(x +e-b) - g (xq+c+b) Jo(x, )dx,
= JIgg(y-b) - g (y+b) Jo(y-c)dy = [h(y)w(y-c)dy,

where h(y) = gE(y b) - gE(y+b) is antisymmetric and h(y) 2 0 for y = 0.
Thus,

fh )[o(y-c) - o(y+c)1dy.

For y=0 and c =0, (y+c)2 2 (y-c)2 and so 1 2 0. The proof is

completed.

Remark. Replacing g by -u in Theorem 2.6, we see that P-bu(E)

is nonincreasing in &6 = 0 also.

Theorem 2.7. If pu € Rk and D 1is a measurable subset of Rk with

x| Cu) = 0 for each x € D, then péu(D) is nonincreasing in 6 2 0.

Proof. We assume u # 0 and |u]] = 1. We use the coordinate system
and notation used in the proof of Theorem 2.6.

Because of the hypothesis on D, D(x]) = ¢ and gD(x]) =0 for all
x; >0. If 0s&=4, then Py(D-8u)-Py(D-8"u)

(<e.0) 95 (%)) eo(x1-8) - o(x,=6")1dx;. Since gp(x;) =0 and
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12
w(x]-é) p3 w(x]-é') for x; <0 and 0=<5 < &', the last integral is
nonnegative. The proof is completed.
If D and D’ are subsets of a linear space, we write D& D' to I
denote the direct sum, i.e., D@D’ = {xty:x €D, y € D’}.
Theorem 2.8. Llet u € Rk, Mo € S:, and let S be a subspace in Rk
containing C. If u € (C@S*) U (-C*), then P6u<A°“0) is nonincreasing

in 620, and, if u €C*, then Pbp(A-“O) is nondecreasing in § = 0.

Proof. First, consider the case u € C U (-C*). Combining Theorems
2.5 and 2.6, we see that Pbu(B-uO) is nonincreasing in & = 0. If
X €ADN Bc-uo then E(x| Cu) = 0, and, applying Theorem 2.7,
Péu(Arch-uo) is nonincreasing in & = 0. With u €CU (-C*) and
v é st, Pé(“+v)(A-uo) = Pép(A-HO-év)' The first conclusion will be estab-
lished by showing A-sv = A. Now, A-&v = {x-6v: x € A}
= {x-6v: JE(x] C)|| = t3 = {y: JJ[E(y+ov | C)]| = t}. Applying part (d) of
Lemma 2.4, the linearity of E(-]S), and the fact that E(6v]|S) = 0, we
see that

E(y+ov [ C) = E(E(y+ov|S)[cC) = E(E(y[S)]c) = E(y]C).

So A-sv = {y: [[E(ylC)] =t} = A.

For the second conclusion, we assume that o € ¢* and 0= 66 .
Since (&'-6)u € C*, by Lemma 2.1, [JE(x+8'u]C)|| = [E(x+éu|C)l. Thus
X+ &4 €A implies that x+&'nu € A or A+8'w CcA-&u, SO that
A-ug=-6'n S A-ug- du.  Hence, Pé,u(A-uo) = PolA-g-8"u) = Po(A-py-ou)
= Pau(A'“O)' The proof is completed.
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Theorem 2.8 will be used to study the monotonicity of the power func-

N . . . , - -
» tions of T01 and T]2 in the case of equal weights, i.e., Wi =W,

jf T W The analogous results for unequal weights will be established
ﬁs next. Let Wi >0 for i=1,2,---,k and let W be the kxk diagonal

matrix with wii = W, i=1,--+,k. Consider the inner product, (-,-)w,
and norm, ﬁ'ﬁw, on RX which were defined in the Introduction. For C

2 a closed, convex cone in RK (closed in the topology induced by H-Hw),

W

. let C denote the dual of C and Ew('{ C) denote the projection onto

N C with respect to (-,-)w; for S a subspace in Rk, let S‘Lw denote
'5 its orthogonal complement with respect to (-,-)w; for fixed t >0, set
’ K.y k
b Ay = {x € RT:JE (X[ C)fl, s t}: and for w €R", Tet P, denote the
.ff normal probability distribution on R with mean M and covariance matrix
- w']. If W=1, then we will omit the subscript or superscript, except
for emphasis.
{i We now establish two identities involving dual cones and projections
:; with respect to (-,-)I and (-,-)w. They can easily be generalized to
the case in which W 1is a positive definite matrix or an invertible posi-
:g tive operator on a real Hilbert space. In either case, the inner product
A\
o (X,Y)w = (X’w.Y)I-
® 172
e Let W denote the unique positive square root of W and let 0 be
'k‘ any kxk orthogonal matrix. The matrix O plays no essential role, how-
.. ever, a judicious choice, such as a generalized Helmert transformation in
;fi the case of a totally ordered trend, may help identify the transformed
ff, parameters and visualize the transformed cone. Let F = Ow]/2 and note
. that F is invertible. For x,y € Rk, it is easily verified that
x (x,¥)y = (FxuFy)s fixiiy = IFxls and  (x,y) /7 ixiiylivl,) = (FxoFy )/ CGIFXGFYQD
e
‘ﬁ.
<
¢
N
.‘l




F)

AR . RS

.

A l‘ l' “.‘

;

] P
" @

s \','n R

e
v .

-
T
\'
o
“~
-
e
]

14

with Fx # 0 and Fy # 0 1in the latter case. Since F is linear and
invertible FC 1is also a closed, convex cone and C = F'](FC). The fol-

lowing lemma is proved in the Appendix.

I
Lemma 2.9. FC*¥ - (FC)*" and E(Fx| FC) = FEw(xi C) for all x € RK,

We now prove the following generalization of Theorem 2.8:

Theorem 2.10. Let u € Rk, “0 € Sl and Tet S be a subspace in

RK containing C. If p € (Cc®s* ) U ( *w), then P
*W

au,w(Aw°“o) is non-

increasing in 6 = 0, and, if u €C then is nondecreas-

ing in § = 0.

Proof. If X 1is distributed as Pu W then Y = FX has a n(Fu,I)

Poru,1{F(Aytg)) = Pep
we will apply Theorem 2.8 to the latter term w1th My Hgs S, C, and A

distribution. So Pag,w(Aw'“o) = I(FAw-FpO), and
replaced by Fyu, F“O’ FS, FC, and FAw, respectively. Note that
(FusFug) = (wag)y = 0, FC S Fs, (FC @ (Fs)*T) u (-(FO)*T)

= Fl(c @ 5*") U (-c*™)] and so u e (Cc @ s*™™) u (-c*¥) implies

Fu € (FC @ (FS)*1) U (-(FO)*1). Now, using Lemma 2.9,

FA, = {Fx: JE, (DO = t) = {Fx: [IFE(x[ O = t]

it

{Fx: JE(Fx]| FC)|| < t}

Thus, by Theorem 2.8, P A

6u,w( WHo) © PbFu,I(FAw'F“O) is nonincreasing

in 6 2 0.

The proof of the generalization of the second conclusion of Theorem

2.8, which is similar, is omitted.
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3. LIKELIHOOD RATIO TEST. We now apply the results in Section 2 to study

the power functions of the LRTs of HO versus Hl'HO and of H] versus
~ HZ’ The power function of TO] is examined first. With t> 0 fixed,
we denote this power function by no](-).

If k =2, then the testing situation is the classical one-sided test
of My = W, versus i, < M- In this case, rejecting My = M for large

values of Ty, is equivalent to rejecting for large values of X, -X,.

2 "M
‘ It is well known that such a test is UMP and its power function is increas-
ing in My = My (cf. Problem 3.2 on p. 117, Lehmann (1959)). The complexity
\ of the situation increases rapidly in k. For k =3 and w] = w2 = w3,
: Bartholomew (1961) derived an expression for the power function of TO]'
_, (The derivation is also given in Section 3.4 of Barlow et al. (1972).) Let
f
o LerS, A= (Z?ﬂ(gi-E(ul HO))Z)]/Z and let 8 be defined by
\
- (y-uy)/W2 = Asing  and  (2uuy-up )AE = 4 cos B.
, The restriction u € H1 is equivalent to 0 < B < m/3. With ¢ the stan-
% dard normal distribution function and ¢(x,t) = (x&(x-v/t)+ g(x~-/t))/8(x),
3
-_: exp(-54") gn/2+
(3.1) Ta(n) = P [Thy>t] = ————Z——f/ ? y(A sin 6,t)ds
01 w-' 01
- 2 /6 +8
+ @(-A sin B)E(a cos B-./T)
. + &(-a sin(m/3-8))&(A cos(n/3-8)-/t).
- Bartholomew (1961) took the partial derivative with respect to 8 and
N
noted that for a fixed value of A, the power function, which is periodic
; with period 2m, 1is increasing for B € [-5m/6, m/6] and is decreasing

4
4,

l.. I.u I. .l. %‘ Il "' ‘l.
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for B € [u/6, m/5]. Thus, it has a maximum at B8 = m/6 (the middle of
H]), a minimum at B = 7/m/6 (the middle of H?) and since it is sym-
metric about B = n/6, it has two equal minima within H] at 8 =0 and
g8 = mn/3.

h The partial derivative of (3.1) with respect to A, evaluated at

? A =0, is gWE)YW3/2+/t/(2m)) cos(B-n/6), which is positive for

~i g € (-m/3, 2n/3) and negative for B € (2n/3, 51/3). This might lead one

x. to conjecture that the power of TO] is increasing in A = 0 for fixed

§ 3 € (-/3, 20/3). We have not been able to establish that using (3.1).

.i However, the results given in this section (Corollary 3.2) imply that it

_é is increasing in A = 0 for fixed B € (-n/6, /2). We have also shown

{% that this is the case for k =3 and B € (-w/3, 2n/3) using techniques

;i similar to those employed in Section 2, but because of their special

&: nature these arguments are not given here. Applying the results of Theorem

~§ 3.3 and those concerning the sign of the derivative, at A = 0, of the

% power, we know that for B € (-n/2, -n/6) U (2n/3, 5m/6) the power func-
tion first decreases in A and then approaches 1 as A = =,

Bartholomew (1961) also considered the case k = 4, but the expres-

sion for the power function is quite complicated. Several values of the

: power function for k = 4 are computed there and results like those

i; obtained for k = 3 are conjectured to hold for k = 4, but no further

-; analysis of the power function is given for k = 4.

‘

z; Remark. If a=2-1 and v € RK then the distance from v+-aEw(v| Hy)

;j to H, is the same as the distance from v to H,.

.

5 Proof. Using B.1 and B.2 on page 131 of Barlow et al. (1972), it can

.




.’f ] 7

be shown that the level sets for Ew(v+-aE(v[ H])! H]) are the same as the

L level sets for Ew(v[ H]). Write out the square of the distance from

as a sum conditioned on the index being in each

v+-aEw(v[ H]) to H,

level set and the result follows easily.

One interpretation of this Remark is that for any v £H1 the collec-

tion of points {v+-aEw(v[ H]); @ 2 -1} 1is a set which is parallel to the

P EDPSIA

boundary of H, (cf. Figure 3.1). Theorem 3.1 gives some properties of

]
the power function of T

Y 1

as the parameter ranges over such a collection

01

of points.

Figure 3.1
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% Theorem 3.1. Let v € RX. As a function of a € (-=,=),
. . W .
\ My (v*+aEy(v [ H{)) s nondecreasing and gy, (v+ ok, (v | ")) is non-
. increasing.
-
Proof. Write v+af(v| Hy) = v- Ew(vI Hy)+ (o.+1)Ew(v| H]), set
3‘-{ = - = *w =
= My =V Ew(v( Hy) Ew(v{ H") and Ew(v( H]) and note that by (2.1),
"‘..h: = = ‘Lw = k . k = = =
__t: (“0’“)w 0. Set S H0 {x €R 'Zi=1 WX, 0} and C CO] H]nS.
- . W W . C
;< Since ST = Hy» CO] ®S$" = H;. Applying Theorem 2.10, Pm,w(Aw)
N - . L , )
3 Pu0+6u,w[T01>t] is nondecreasing in &. Thus, nm(uoﬂsu) is non
N decreasing in &2 0. For & =0, consider my,(ug*(-8)(-u)), which is
~ N
2 nonincreasing in -5 if -u € CS:" = (H]ﬂHaw)*w = H’]"w @ HO. Barlow et al.
o (1972, p. 49) show that
e W o ook o
(3.2) H] {x €R 'Zj=1 WX 20 for i=1,2,°"°,k-1
- w
i-:-‘vf- and =1 W%y = 0].
.::t: . W *W k =W *W
2 Since (-H)) N Hy" < H}", -ut (Zj=] wise, €HT and -u € HT @ H,
-J | the first claim is established.
.r,_.:,
o For the second conclusion, write v+ c.Ew(v[ H’]"w) as ug+ (atl)u with
Y )
) - - W =
..: Hg = E (v Hy) and u = Ew(vl H;‘ ) and note that (ug.u), = 0. Let S
. and C be as in the first part of the proof. Now u € H’{w c CB‘;‘ = (H]ﬂS)*w
:.\ = H;w @ HO’ and applying Theorem 2.10, nO](p.O+bu) is nonincreasing in
:- 6= 0. For &= 0, consider m, (p.0+(-6)(-u)) and note that -u € -HTN
‘ c -—C*w. Thus, applying Theorem 2.10 again, 0 (u0+6u) is nonincreasing
\j for & < 0. The proof is completed.
o
o
""j Theorem 3.1 can also be established using the results in Robertson and
,..‘ Wright (1982). They considered two relations on Rk defined by x sy
s
o2
~
l.
[
- -,:.\..nq".‘.'.{'y}_ v\f'* o N " !.--._‘-...- "._'. ..'- 4y \ \.’-. "« _r-_- 'l'.'nf--'. Tt -JQ‘_},’...‘ .'--"._—_
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provided y-x € H] and x << y provided y-x € -H;w

and proved that if
: 4 4 , s .
either p<g<y or p<<u then ﬂo](p) < "01(“ ) (i.e., ”01( ) s
isotone with respect to both < and <<). For o = s vi-a]Ew(v[ H])
W W
5,v+-a2Ew(v( Hy) and v+~a2Ew(v! H? ) << v*-a]Ew(v[ H? ) and the results
of Theorem 3.2 follow immediately. However, this approach does not yield

the analogous results for T12'

Corollary 3.2. If p € -H?w € HO’ then "01(6“) is nondecreasing in

§€(-=,®). Furthermore, TO] is unbiased.

Proof. By hypothesis, u = v+v' with v € -H?w and V' € Ho -

Examining the definition of TO]’ it is clear that nO](éu) = n0](6v).
Applying the second conclusion of Theorem 3.1 with v replaced by -v,
we see that "01(6V) is nondecreasing in § € (-=,=®).

c-H¥eH. So for

1 1 0
p€ H]-HO, ﬂo](u) > nO](O-u). The proof is completed.

In the proof of Theorem 3.1, we saw that H

Remark. Since H, C-H’]"w ® Hys "0](6“) is nondecreasing in § € (-=,®)

if u€ H].
The 1imiting behavior of Tots in the directions considered in Theorem

3.1 and Corollary 3.2, will be discussed next. A slight generalization of

Theorem 3.4 of Barlow et al. (1972) will be used to obtain the limits of

interest. Following their notation, we define for u € Rk,

_ ok M2 o~ ok k
M) = Ziq wylRy)T with s T g Wl /B Wy

We first note that the statement of the theorem given there needs some clar-

ification. Consider the following example: Let w = e let v € H]




with [v-V]l > 0 and let My = (-1)" nv. Then Az(un) = nzAz(v) - o and

(ut o )/(p.n j-ﬂh) = (v.-C)/(vj-U) for 1 <i, j<k. However, for odd

n,i n i

n the number of distinct values in E(un[ H]) is 1, i.e., E(un[ Hy)

is constant, but for n even, E(unl H]) = n-v which is not constant
since [lv-V]] > 0. Hence, the hypotheses of their Theorem 3.4 may hold, but
zu may not be constant. By making only slight modifications of their

proof, one can prove the following generalization.

Theorem 3.3. Llet v,8,m € RE with My >0 as n—=>e If w, =ay

5 = ]/2 ._~ 3 @® @™
and b H bn (6 e+nn) with anbn e as n = o, then "01(“n)';> ]

provided 6 £ K™ @ Hy, and my(u)) >0 if 6 € (H‘{”@HO)O, where A0

denotes the interior of A.

Barlow et al. (1972) applied this result to show that TO] is consis-

tent for u £ H?N @ H It also gives the radial limits of the power func-

0
tion in certain directions. These 1imits are obtained by setting v = 0

in the following:

Corollary 3.4. Let u,v € RK. 1f T H;‘“ ®Hy, then

. _ MHNou 0 . )
11m6+m ﬂo](v+6u) =1, If pue€ (H] C>H0), then 11m6+m ﬂO](V+6u) 0.

Proof. The result follows from Theorem 3.3 by setting v =w, 6 =y,

VS _ o2 .
n (v v)/én, a = 1, bn S, with & — =.

One can obtain the form of Tim Taq (VHEL) with p € a(H*w€>H ),
& 01 1 0

but such 1imits play no central role in this work and are tedious to develop,

so they are not included. Next, we study the limits of the power function

along lines parallel to H] and H?w, that is, we consider

. ) W . .
1im no](v+aEw(v[ H])) and 11ma+tm nO](v+aEw(v[ H? )). Directions

>t

-----
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parallel to H.I will be discussed first.

Corollary 3.5. Let v € RK. If veH’{“@H then

0’
Mgy (v (v [ H))) = g (V). If v €W @ Hy,  then

Hma-m nO](eraEw(v! H)) =1 and im . nO](v+aEw(v[ H])) = 0.

Proof. Using (3.2), we characterize H?w @ H0 as follows:

_ k_ i i X i = [ -
e, = {x €eRrR": Zj=1 WX 2 (Zj=] wj)x for i=1,2,.--,k-1}.

(3.3) H‘{”

Using the minimum lower sets algorithm for computing E(x| H]) (cf. Barlow
et al. (1972, p. 76)), we see that Ew(x[ H]) € H0 if and only if

=W *W

1 @HO. If \JGH] @HO,
the fact that m,, 1is invariant under constant shifts. If v ¢ H?N @ Hy»

X €H then the first conclusion follows from

01

. W W
then E (v[H) £ H, and since H; N (H? ® Hy) = Hys E v ] H) £ H? ®H

1
Applying Corollary 3.4 gives the second conclusion.

For the last conclusion, we consider nO](v+(-a)(-Ew(v[ H]))). The

desired result follows from Corollary 3.4 by showing that -Ew(vl H]) is

*W

in the interior of H] @H which is characterized by making the ine-

09
qualities in (3.3) strict. Now -Ew(v[ H]) £ H0 and has nonincreasing

k

coordinates, and for any x € R~ with these two properties,

Zi WX/ W is nonincreasing in i and equals X for i = k.
j=1 "5%5/L=1 Y3 n g 9

Furthermore, Zg;} wjlezg;} W > %, for if not x is constant. The

proof is completed.

We now consider limits along lines parallel to H;w. If v € HTN,

then \r+aEw(v[ wa) = (a+1)v and yields radial limits as a = =, If

W .
v £ H?w, then Ew(v[ H?w) € a(HT ® Hy) and Tim (v+aEw(vl H?w))

i
o 0]
is the type of limit discussed after the proof of Corollary 3.4.

0
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Corollary 3.6. Let v € RE. If v e Hy» then no](v+aEw(vI H?w))

_ . *Wyy
= "01(V)' If v¢§ H], then ]1ma»-° nO](v+q£N(vl H )) = 1.

. oWy *Wy _
Proof. Since Ew(vl ) = v Ew(vi Hy), we see that Ew(v! HY") = 0
if and only if v € H]. The first conclusion is now clear.

For the second part, assume v £ H]. Using (3.2) and (3.3), we see

that x € W @ H_ <> x-X € WY, The proof is completed by applying
1 1

0
Corollary 3.4 provided -E,(v| HT“) £ 1Y e H W
*W

. If -Ew(v(Hf”)eH & H

0

0,
then -E (v|H¥) e W But (-w3M) W - {03, and if Egv|HY) -0,

then v € H].

We now turn our attention to the study of T the power function of
T]Z‘ For k =2 rejecting Hy S My in favor of My > Hy for large values
of le is equivalent to rejecting if 7}—?& is large. This test is
known to be unbiased, UMP and to have a power function which is nondecreas-
ing in Hy=Ho- For k=3 and Wy = Wy = Was one can employ the same

techniques used by Bartholomew (1961) to show that

exp(-%Az) -m/3
—————J”B (4 sin 6,t)de
Lals B-m

+ &(-A sin B-T)2(A cos B)

(3.4)  m,(u) = P [T ,>t] =

+ (-4 cos(g+m/6)-/t)2(A sin(p+n/6)),

with A and 8 defined as before. It is not difficult to show that, for
fixed A, n]2(~) is antisymmetric about B =mn/6 and B = 7m/6. Based
on Bartholomew's work on o with k = 3 and Wy = W, = W, oOne would
conjecture that T, is, for fixed A, decreasing for B € [-5n/6, n/6]

and increasing for 8 € [n/6, /m/6]. We have not established this




analytically, but have numerically obtained the value of an12/aa for
several values of B8, A and t. This partial derivative appears to be
negative on (-5m/6, w/6) and positive on (m/6, 7m/6).

The partial derivative of LPY with respect to A, evaluated at
A=0 is -p(/E)(3t/(am)) /24 1/2)cos(B-n/6), which is negative for B €
(-r1/3, 2n/3) and positive for B € {(2n/3, 51/%,. As one might expect,
this behavior is opposite to that of o1
For arbitrary k, we apply the results in Section 2 in our study

of Mo

Theorem 3.7. Llet v € Rk. As a function of a, n]2(v+-aEw(v| H]))

is nonincreasing for - < a < ® and nlz(v4-aEw(vi HTW)) is nondecreas-

ing for a2 -1.

. _ *W -

Proof. Write v+-aEw(vl H1) = Ew(vl L )-+(a+1)Ew(v[ H]) ot (a+)u
With (ugm)y = 0. Set S =H¥ = {x € RC: K wox; = 03 and
<S. Applying Theorem 2.10, we see that for . € H, = C?g,
AC) = W]Z(u0+6L0 is nonincreasing in &6 for & =20. For § =<0,
consider ”]2(“0+('5)('“)) which is nondecreasing in -6 since
-u € -H] C12'

For the second conclusion, v+-aEw(v{ H;w) = Ew(vl H])+ (a+1)Ew(v[ H;w)

. . W
= uo*'(u+1)u with (uo,u)w = 0. Since u € H;

= C]Z’ we apply Theorem
2.10 to show that "12(“0+6“) is nondecreasing in & 2 0. The proof of

the Theorem is completed.

Comparing Theorems 3.1 and 3.7, we see that nO](v+‘aEw(vI H;w)) is

monotone for -« <a <, but n12(v+-aEw(v[ H;w)) is only claimed to be
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~f.: monotone for a = -1. We consider an example to show that the second con-
clusion of Theorem 3.7 is not valid for - < q < =,
Example. Let k =3, w=e; v= (/2/2,-42/2,0) € H;‘. (Recall, H;‘
is characterized in (3.2).) Now v+aE(v] H?) = (atl)v, and we will show
_If that nlz((aﬂ)v) is not monotone in (-=,-1). If it were, then
-~
\'(-. nm(é(-v)) would be monotone for & > 0. However, the B corresponding
f\, to -v is w/2 and for such B8, anlz/aAiA=0< 0. Hence, the power
j:: decreases for & small and positive, but applying Corollary 3.11, we see
-.: 7
~ that iimc mo(e(-v)) = 1.
*
The above example is interesting for several other reasons, also.
(1) For the v chosen, v+ aEw(v[ HT) = (a*+1)v and so we see that
5 n]2(6v) is not monotone for § < 0 (see the next corollary).
{
(2) It shows that ™, is not antitone with respect to the partial order,
'-'_ff <<, discussed in Robertson and Wright (1982), that is, if 0=<s&8< &,
o~ then &(-v) << &' (-v) but n]z(-av) may be less than n],,(-a'v).
. (3) It shows that T]2 is biased. Along the ray {6(-v): 6 = 0}, the
;:':ﬁ power decreases for small, positive & and so the level of signifi-
;-' cance is at least (and, in fact, is equal to) "12(0) = n]z(o(-v))
1;': > n]z(é(-v)) for some & > 0. We will consider the question of the
" unbiasedness of T]2 in more detail later in this section.
‘ Corollary 3.8. If u € H], then rr]z(éu) is nonincreasing for
2.; 5 € (-»,®). If u € H’]"w @ HO’ then n12(‘5“) is nondecreasing for
E:‘. 6 € [0,“’).
:j- Proof. Corollary 3.8 follows from Theorem 3.7 just as Corollary 3.2
3
>
.
Oj
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follows from Theorem 3.1.
To obtain the limits of ™o in the directions considered in Theorem

3.7 and Corollary 3.8, we establish the analogue of Theorem 3.3 for Mo

Theorem 3.9. Let v,e,nn € Rk with u =0 as n > e, If
= o= bV 2(0n s -
W= av and M oHp bn (6 e+nn) with anbn = ® 3as n—=> ®, then
. . 0
nlz(un)-—> 1 provided 6 ¢ H] and "12(“n) >0 if 8 € H1.

Proof. The proof of the first conclusion is very similar to the proof
given in Barlow et al. (1972) for their Theorem 3.4. The LRT of H] versus

H2 rejects H] if le > t. In this case, TIZ/(anbn) converges in prob-

ability to Z$=] vi(E(eI Hy)-6 )2, which is positive if ¢ ¢ Hi. Of course,
t/(anbn) -> 0 and the first conclusion is established.
. 2
For the second conclusion, molk,) = Pun’w{x: “Ew(x[ Hy)-xlly > td.
But E, (- [Hy) = Ey( | Hy) where V is a kxk diagonal matrix with
2

. 1
Vig = vy for i =1,2,-40 .k, HEV(x! H])-xuﬁ = HEV(al/Zx[ H])-ah/zxuv,

and 1f x ~mn(u W) then a,],/zx~ﬂ(a:,/2un"’-])° S0, Mol

]/zunf H1)-X-a;/2unﬂs > t}. By the hypotheses of the

- 1/2,, = K
theorem, ) wy = (anbn) (e-e+nn), anbn - o, n, = 0 and 8-6 has

strictly increasing coordinates. Thus, for each x € Rk, there exists an

n(x), with x+ a;/%4n € H, for all n 2 n(x). Hence,

1

n/zunl H])-X-a]/zu 12

n nhV =0 for all n 2 n(x),

”Ev(X+a
and because t > 0, the desired result is established.

Corollary 3.10. If ni = Ny, with \Z >0 for i=1,2,--+,k, then

T]2 is consistent for all . € H].
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tj.:-‘,
Stf Proof. This result follows from Theorem 3.9 by setting
N _ 2 . 2 - _ _ -
-".i. v (Y]/U]a ’Yk/ok)’ e Ms T'In =0, bn =1, and an n.
Wt )
%:% Corollary 3.11. Let u,v €R". If nu £ H], then 11m6*m‘n]2(v+éu)
. - . 0 . _
) 1, and if u € H], then ]1m5+m-n]2(v+6u) = 0.
e
'*§S Corollary 3.11 follows immediately from Theorem 3.9 and with v =0,
:_ja gives the values of certain radial limits. Because the radial limits of
sf- ™o for u € aH] are of interest in our study of the bias of T]2’ we
‘; need to obtain the value of these limits. For u € H], let
1= J] < j2 oo & ‘jh = k be defined by My =°0 = uj] <“j.|+'l = e
Y. T, <ese< g, S T Ul set
o Iz AL In
:L::EI ‘ - k. cue
ft? (3.5) C'(u) = {x er™: X} S XpSeee < xj],xj]+]s oo < sz,
s 2 X5 < < X, }
- Ipart] I
o and set G] l.] 52, 9\]]}’ Gz {J]+] ’ 332} ] sbh {Jh_‘l+] ’ ,Jh}.
f{ The G, are the level sets of u.
\ )
= Theorem 3.12. Let v €R" and u € H,. Then,
. (3.6) Ti (vtow) = P CIE (x| € ())-x}iE > t]
Yot ' Moo M2 VHOL) = Py, Ll (XD CT D)Xy > .

a e, -

Proof. If u € HO then €' (u) = Rk, the r.h.s. of (3.6) is zero

'I’
and (3.6) follows from Corollary 3.11. Suppose u € BH] and consider

E

X

S

t i e Xe=V. - U, = N
w(x+v+6u‘H]). For a fixed x, x1.+v1.+6u1 X vj éuJ ® as ©

for i € Gz’ je€ sz with 4’ < 4. So for each fixed x, there exists a

.
" Iﬂl

A ‘- “ .l -

6(x) with

@
LA

ll' --l
L

e ¢ 8
v
Ll el

e

a
LY
P
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max;eq (XjFvitoug) < mingge (xptvirdug) < maxgeq (XiHvitou;)

1 2 2

<---<nnN€%fXﬁVﬁ&q)

for & = 6(x). It follows from the minimum lower sets algorithm (cf. Barlow

et al. (1972, p. 76)) that for 1'0 €G,, mmier Y; Sy = maxiEGL y; and

0
that since &u 1is constant on the level sets of u, Ew(y4-6u)c’(p))

= E(y)C(u)) + &u. Since C'(u) o H, Ew(x"'\)*fu! C' (u))=E (x+ v+ ou | Hy)
for & 2 &(x). Hence, for each x, [E (x+v+éul Hy) = x = v = dully

= [E(xt e (W) - xliy. Thus,

(Vo) = Py ix: NE (x+v+ou|Hy)- X-v-éuﬂﬁ >t} >

P, . Ix: !l_Ew(x+v[ ¢ (u)) - x-vl[ﬁ > t]

0,W
= P, JLIE, (e () - X2 > t1.

The proof is completed.

By taking v = 0 in Theorem 3.12, we obtain the radial 1limits for

L € OH Corollary 2.6 of Robertson and Wegman shows that the r.h.s. of

1
(3.6) with v = 0 1is a weighted sum of xz tail probabilities, and the
remark on p. 148 of Barlow et al. (1972) shows that the weighting constants,
i.e., level probabilities, in this case, are convolutions of those for a
total order. We will compute some values for this limit when we study

b NEO TR = xlly = [lE (x () - xily

and so, PV’N[I{Ew(x[ ¢ () - xiy > t] s m,v).

bias. However, since C’(u) D H

Next, we study the limits of the power function along lines parallel
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*W

to H, and H1 Directions parallel to H1 will be discussed first.

1

If v€EH then v+ o.Ew(v[ H]) = (a*+1)v, which yields a radial limit as

'I’
a = ®, So we may suppose v € H].

Corollary 3.13. 1If fo], then

’Iima_m 12 V"" O.Ew l H )) w[”Ew(x! ¢’ (Ew(vl H])))-wa > t]’
*W _ . %W
If v eH" ®H, then rr]Z(v+aEw(v[ H])) = rr]Z(\a), and if v £H" @ Hy,

then

]1mm+_m n]z(v +a Ew(v I H] )

Proof. The first part of the result follows from Theorem 3.12. For
*W

the second part, we recall that Ew(vl H,) € Hy 1if and only if v €H"@H,.
. *W _ *W
So, if v € H" @ Hy, then "]2(v+ aEw(v{ H])) = rrlz(v). If v £H @Hy,

then -Ew(v( Hy) £ H, because (-H]) NHy =H Applying Corollary 3.11

0
gives the desired conclusion, and the proof is completed.

*W

Directions parallel to H] are considered next. We may assume

v & H , and in fact, since Ty, is invariant under constant shifts, we

may assume v £ H*W @ H

0

Corollary 3.14. If v €H, then m,(v+aE (vl HH)) = mp(v). I

. W W
v £ Hy, then v, n12(v+aEw(v[ H; )) = 1. If v EH U (H’;‘ @HO),

. *Wyy
then lim, __ "]2(V+°"EN(V! K )) =1

Proof. If v € H,, then [H*w =0 and so the first conclu-

'I’
sion is immediate. If v € H;, or equivalently E (vi H ) £Hy, then

appealing to Corollary 3.11, Tim,,  m,(v+aE( (v] H] = 1. The last




conclusion also follows from Corollary 3.11, if we can show that

- *N - *w k =
Ew(v[ i ) £ Hy. Suppose n Ew(v[ ik ) € Hi. Then Zj=] Wi 0, n

is nondecreasing and n £ H0 (Ew(v[ H?w) € H0 <> Ew(vi H;‘w) = Q<> v € H]).

So, Z}=] Wim; is nondecreasing in i and equal to zero for i = k. Since

i i = ee k= = O | i
nka, Zj=] wJ.nJ.<0 for i =1,2,.-,k=-1. 1If G, {].,2, ,J]} is

. . J1
the first level set for E (v[H,), then j, <k and Z_j=1 Win,

j] j] yj1 ZJl - .
) - ZJ-=" wj(Z£=1 Wz\)l‘/_.%:-l WL)- . = 0- Th1$

J
_ I
ZJ.=] wJ.(Ew(v[ H 521 %55

1575
contradiction completes the proof.

We have already noted that T is biased and we now wish to examine

12
the amount of bias. In the case k = 3 with w = €3, the level of sig-
nificance is n12(0) = P[x§> t}/3+ P[x_$> t]/2. Partition R3 into four
sets depending on the number of level sets in the projection onto H].
Specifically, with x* = Ew(x{ H1), Tet

=y xFey*ey® (= 0 U S SO
C -{x.x1<x <x.} (= HY), C2-{x.x1 x2<x3}

C3={x:x1<x*= } and C4={x:x?=x;=x§} (= H’{@HO).

We have seen that inf

L€C n12(p.) =0 (cf. Corollary 3.11) and that
1

inf

H€C4 "12(“) = n]Z(O) (cf. Corollary 3.8). It will be shown (cf. Theorem

. . _or2

3.15) that 1nfu€C2 "12(“) = 1m"_1603 n]z(p) P[x]>t]/2, and so by the
- . S . i

continuity of LD 1nfu£H] n]z(u) = 2 P[x1>t]. In the case being con

sidered, the 5% critical value for T is 4.578 and P[X?Z 4.578]/2

12
= .0162, which gives some idea of the amount of bjas. (Larger k will be

discuss~d later.)
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¥ Returning to the case of arbitrary k, we partition R~ into M =2
_ subsets depending on the level sets of x*. Let Cy = {x: x’]"< x;< ---<x;}
. = yo = fye ¥ = gk R eee ¥ = s x*<x*= ¥ < x¥< ven< x*
( H1), C, {x: Xy = x5 < x3< <xk}, Cy {x: X]< X5 = X3< X< <xk}
= R S SO | o x
--,CM—{x.x] xk}( H3 @HO). For x €C;, let C/(x*) be
o defined as in (3.5) and note that C’(x*) 1is the same cone for each x € Ci'
,. Set C\ =C'(x") for x€C,.
; Theorem 3.15. With C, and C; defined as above,
< .
*.
. i = ! ‘).
& (3.7) 1nfueci molu) = Py JOHE(x T C5)-xll, > 1.
4 . o . .
’ Proof. We consider Cy = H" @ Hy first and note that () = H,.
Equation (3.7) follows from Corollary 3.8. Fix i <M and let u € C,.
Now, as in the proof of the Remark preceding Theorem 3.1, u+ o.Ew(ul H])
\ has the same level sets as u for a = -1. Applying Theorem 3.7,
“:’. mplu+aby i) sm,u) for a=20 so that
2
' infuéCi rr]z(p.) = infp.GC]- 11'ma_m n]z(u+ aEw(uf H'I))
- . £y 12
:::: mfu.ECi pu,w[“Ew(xi C]') xllw > t]
N
.' by Corollary 3.13.
Let u, = (u%_]ﬂ,---,ujz) and W, be the (J,-j, ;)x (JL-JL_])
- diagonal matrix with diagonal elements w, soor,w,  for £=1,2,---,h,
Jg-1*! )
¢ Now, JIE, (x| Cf)-x“2 = xh NE, (x, [ H, ,)-x ]]2 which is a sum if inde-
o5 S i L o L P A I S L
E: pendent random variables on Rk. The distribution of the Lth summand
”
T could be thought of as indexed by (u,W) or (uz,wl). In the latter case,
o
") we can apply (3.7) with i =M, to see that
%
>
X
(]
2
-
o A N A Tt R NI e e e S NN S NS AT N N e et T e SR A L L o



P

.»-f.-‘_-'_-‘q.f.- LRI A S A A AL A AR AT A A A PO PO A e 4
g 3
> o T G FHy ol > 12 P Tl ([ )2 > t] since
' Hete ™ ’ 4 Y e ’ &

[ Ew(“zl H],L) is constant. Under both probabilities PN’w and P0 W’

;S HE, (x| Cg)—xuﬁ is a sum of h independent random variables with the L
.:.:

) summand stochastically larger under Pu W then under PO W £ 1,2,---,h.
. 2 . . cus
i: So HEw(x{ C'i)-xl{w is stochastically larger under Pu’w (cf. Proposition
[ C.1, p. 485, Marshall and Olkin (1979)). Hence,

inf . P LIEL(x [ C)-xli2 > t] = P ([LEL(x] Ch)-x|) > t]
. uGC]. o WEIEW i ‘W 0,W-H"W i W :
h and the reverse inequality follows from the fact that Ci is a cone and
PM’w is continuous in u.

- . . _ 2

- Corollary 3.16. 1nfu£H] n12(“) = P[X]>-t]/2.
&: Proof. By the continuity of m,,, 1nfﬁ£H] "12(“) inf WG, 12(“)
2 Fix i>1, then there is some Jj with xg = x§+] for all x € C, and
.4' = { . * LIRS = L * !

. Cj+] XXy < < xJ xJ+] < xk}. Hence, C1 CJ+]
. _ k. k
- = {x €R Pxg s xJ+]}, [, (x| c)-x|l,, = HEw(x! C3.+])-x[[w for all x € R
- 2 /

: and Py [HE (x ] C5)-x[l, > t] = Po’w[“Ew(x[ Cjﬂ)-x{[w > t]. So,

] . . 2

X 1nfu£H] TT]Z(“) = mf‘lsjsk PO,N[“E (x| C,U x“w >t]. But, E (X( C3+1

£ = x; for 143,541 and (Ey(x] i)y Eylx]Ciy) ) 1s the projec-
i

e tion of (x, ,xJ+]) onto {y € Rz 20 y2} with norm defined by

i hyh = w y?*-wj+]y§ Using Corollary 4.2 of Robertson and Wegman (1978)

Ny

3 and the fact that for a total order and any weights P(1,2) = P(2,2) = 1/2,
N o2 .

C we see that PO’W[HE (x| CJ+1 -l > t1 = PIxy > tl/2. The proof is com-
7 pleted.
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It is of interest to examine the "amount" of bias in T]2 as k

12 with w = ek and

k = 3,4,5,6, we computed the infimum in Corollary 3.16. As was noted

increases. So with t the 5% critical value for T

before, for k = 3 the infimum is .01620, for k =4 it is .00648,
for k=5 it is .0028]1 and for k =6 it is .00128. (The critical

values are taken from Robertson and Wegman (1978)). The infimum is approx-

imated by "12(“) with u at a large distance from HO’ but close to H].

For practical purposes it is also of interest to compute LEPA at u near
H1, but at a "reasonable" distance from HO' We first consider k =3
and w = e3, for in this case the powers can be obtained numerica]]yf
Because of the proof of Corollary 3.16, we will compute n]Z(v4w1E(v[ H1))
for various a and v chosen so that E(v} H]) has one level set with
two elements and the other has one element. Table 1 gives the values of
n12(vi-+aE(vi{ H])) for v, = “i/A(“i) with = (2,1,2) and

My = (1.5,1,2) and t = 4.578, the 5% critical value.

We observe that the bias of T even for k = 3, 1is large enough

12°
to be of practical significance. For k =5, w=e;, t=7.665 (the 5%

(3,1,3,4,5),

critical value of T]Z) and v = u/A(u) with o
n]Z(\r+aE(v[ H])) are estimated by Monte Carlo techniques with 10,000
replications. These values are given in Table 2. We notice that the bias

is even more pronounced for k = 5.




TABLE 1. Values of nlz(v1.+aE(vi[H])) with k =3, w=e;, t=4.578

and v, = “i/A(“i)‘

Wy = (2,1,2) by = (1.5,1,2)
a v]-+aE(v]I Hy) A uivs vz-FaE(VZ[ Hy) A ™5
.6124,-6124,0) .866 .1448 (.3536,-.3536,0) .500 .0880
2.449,1.225,2.449) 1.000 .1338 (2.121,1.414,2.828) 1.000 .048}
4.287,3.062,4.899) 1.323 .0770 (3.889,3.182,5.657) 1.803 .0272

(
(
(

2 (6.124,4.899,7.348) 1.732 .0466 (5.657,4.950,8.485) 2.646 .0227
(11.64,10.41,14.70) 3.123 .0270 (10.96,10.25,16.97) 5.220 .0192
(

10 (20.82,19.60,26.94) 5.568 .0213 (19.80,19.09,31.11) 9.539 .0178

TABLE 2. Values of m,, (v+aE(v]| Hy)) with k=5, w=e;, t=7.665

12
and v = u/a(u).

[ P (331333495)

a A P

-1 (.3371,-3371,0,0,0) .48 .0699
'f 0 (1.011,.3371,1.011,1.348,1.686) 1.00 .0334
SE 1 (1.686,1.011,2.023,2.700,3.371) 1.82 .0204
;ﬁ 2 (2.360,1.686,3.034,4,045,5.057) 2.68 .0151
@
r-
!
:

(
5 (4.384,3.708,6.068,8.090,10.11) 5.30 .0108
10 (

7.753,7.079,11.12,14.83,18.54) 9.68 .0101

NG A T AN Ty |




4. CONTRAST TESTS. Suppose one is to test H0 versus H]-H0 with a

contrast test which rejects for large values of TC = Z?=] wic17} with

wo = ni/cf and C # 0. Assuming the weights, Wi, are equal, Abelson and

Tukey (1963) found that the optimal contrast coefficients are
c{® « ((1-1)(k-i+1)12- (3(k-1)/3, 154 s k. Schaafsma and Smid

(1966) generalized their work to the case of unequal weights and obtained

)12 ))/2

s. (s, -s.

@1 wel® e s sy, ) A

. - i -
with s, = Zj=] W, and sy = 0.

We note that Z?=] wicgo) = 0 and so the distribution of T (0) is the
c
same for all u € HO'

One could also consider testing H, versus H2 by rejecting for

1
Jarge values of such a statistic. Of course the contrast coefficients for

testing H, versus H2 would be different than those chosen for testing

1
H0 versus H1-H0. The power function for the test (whether testing H0

versus HI'HO or H] versus H2) is given by
(4.2)  m(u) = 1-&((t-(cm) )/lcl,)-

Since the distribution of TC may not be the same for all py € H], the

level of significance is SUHJGH ﬂc(p). If there isa u € H] with

1
(C,u)w >0, then using the fact that H, is a cone, we see that this

supremum is 1. Thus, we restrict attention to ¢ with (“’C)W <0 for
*W

_ﬁ all u € H], or equivalently c¢ € H] . For such ¢, the level of sig-
% nificance is SuDuEH]{]- 2((t-(cou)y)/llclly)3 = 1= &(t/lcfi,). Thus, if 2,
q

N satisfies Q(zp) = 1-p, then t = zp“c”w gives a test of size p.

2
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We now consider different optimality criteria and the corresponding c.

Fix u € H] and consider the contrast test which maximizes the power at u,
that is, ¢ maximizes (c,u)w/[(c“w over all ¢ € H;w- {0}. Since u ¢ Hys
there eixsts a j with M3 > M Consider ¢ with c; = 0 for

J

i# j,jt1 and cj = -c‘].“l_1 =1, then p(c,u) > 0. If we agree that

(0su)/1i0li = 0, then the maximization problem is unchanged if H;w- {o}

is replaced by H?w. Since u s fixedand €T =0 for c € H;w, the

above is equivalent to

(4.3)  maximize plc.) = Zé_y Wi (c,-0) (s -0/ (le-T lull,) with c € He¥
*W
1 0’

is a closed convex cone containing the constant functions. Furthermore, c

;w ® H, if and only if c¢c-C solves

(4.3). Applying (ii) of Corollary E, p. 320 of Barlow et al. (1972),

Ew(u! H;w @ H maximizes p(c,u) for c € H?w @ Hy. Using (2.1) it is

(set p(0,u) = 0). Clearly, H; @H which is characterized in (3.3),

solves maximize p(c,u) over c €H

O)
easily shown that Ew(u[ H?w C>H0) = Ew(u[ HTW)4-GZ Since

k
i=1

~

W ~ ok W
z Wi(Ew(u[ H? )i+-u)/Zi=] Wi =, Ew(u[ H? ) solves (4.3). The power

which by (2.2) can be written as 1- é(zp-“Ew(u{ H;W)Hw). We have proved:

Theorem 4.1. Let u £ H]. The contrast test with maximum power at
u is determined by ¢ = Ew(u! H?w). The power function is

M) = 1= e(z - fE G L M),

Since the optimum ¢ depends on the unknown u, one could estimate

LMy oy K r ot ovtu T
¢ using E(X] H? ) =X-Ew(X[ Hy). However, Z; W, (X, - Ew(X[ Hy) )X,

= 'Y Y 12 _ . .
= IX- Ew(X[ Hlhy = Tqp (cf. (2.1)). Thus, T,, is an adaptive contrast

test.
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Next, we consider the criterion used by Abelson and Tukey (1963), that

is, we fix & > 0 and seek contrast coefficients which maximize the mini-
mum power over points at distance & from the null hypothesis, H]. So,

we wish to solve

SupCGH?w-{O} infu:u“'Ew(H!H] )“wzb i -Q(zp—(csl-l)w/“(:”w)}-

However, we will show that for ¢ € H?W- {0} and & >0,

inf

' = hat this criterion is not useful.
we =By (i 8 m (1) = 0 so that this criterion is n u

Lemma 4.2. If c € H?W- {0}, >0 and k > 2, then there exists
a u £H with fls - Ew(u[ H1)Hw =§ and (c,Ew(p{ H1))w < 0.

-1 -1

.I = * o w
,0" 90)9 V2 = (Oawz ,-W3 0, 30)9

Proof. Let v, = (w;],-wé
V1 T (0,---,0,w;1],-w;]), It is easy to show that
H?w = {a]v]+ et gV ptag e 0}. Furthermore, (Vi’Ew(“{ H]))w <0
for each i and u. Let ¢ = a]v]+ Tt Velye If aj >0,
1< j<k-1, then let u be (1,2,---,k) with the j+1%% and j+209
coordinates interchanged. So, Ew(“l H])i =1 for i # j+1,j*+2 and

ElulH); = ((J+2)Wj+1+ (J+1)wj+2)/(wj+]+wj+2) for i = j+1,j+2. Thus,

a5 (vioEglu WD)y = ay(G-Eu i Hy)y,) <0 and (c.E (ulHy))y <0, If
ay = .- =a ,=0, and a,_;>0 (recall, c#0), then let
m=(2,1,--,k). It is easy to show that ak—l(vk—l’Ew(“l H]))w < 0.
Thus, in either case, one can find u £ H; with (c,Ew(u[ H )y < 0.

Multiplying by the appropriate positive constant, we obtain . £ H] with

(c,Ew(u[ H]))w <0 and Hu-Ew(u[ H])“w = 5. The proof is completed.




For a = -1, set My 7 ur*aEw(uf H]) and note that by the remark pre-

ceding Theorem 3.1, w;a-Ew(pa[ Holly = =€ (LB, = 8 > 0. Thus,

My € H], the distance from Mg to H, is & and

1

vim, (Cauy)y = (o) * Tim | a(c,Eluf Hy))y = -=

Therefore, for each ¢ € H?W-{o} and & > 0,

inf () = 0.

e llu-y (bH Dl me T
We must consider other criteria.
Following Schaafsma and Smid (1966), we consider the contrast that mini-
mizes the maximum "shortcoming" among all contrast tests. Recall that for a
given u £ H], the contrast test with maximum power at u 1is obtained by
taking ¢ = u-Ew(u[ H)) and has power 1- §(Zp-“u-Ew(p{ H1)ﬂw). So, for

any contrast test its shortcoming at u s
(4.4) oz -(cm)y/licly) - #(zp=lu-E (T HD[)-

If there is no constraint on . other than u £ H1, we see from the pre-
ceding analysis that the supremum is at least as large as 1- Q(zp-é) for
each & > 0, and so the maximum shortcoming over all u € H] is 1. Even
if u is constrained so that “u-Ew(u[ H])“w = § >0, the maximum short-
coming is 1- é(zp-b) which does not depend on c¢. Neither of these cri-
teria are useful.

The vector of means u+aEw(u[ H]) remains at a fixed distance from

H but it is moving away from H0 as a increases. So, we consider the

",
contrast test which maximizes the minimum power over all u £ H] with

1, -1 )]/2 for i = 1,2,+++,k=1,

alu) = -l = 8 > 0. Let a; = (Wj Wiy,

AT T NN NN S N ;.1
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let df =0, dg =

a. for i=2,---,k, let d, = d'-d’ and let

3=1 7] 1

Theorem 4.3. Let & > 0. The contrast test which has coefficients

(1)

c and rejects for large values of T (1) maximizes the minimum power
o

over all u £ H, with A(u) = 6. Furthermore, such contrast coefficients

are unique up to a positive multiplier.
Before the proof of the theorem is given, we establish
Lemma 4.4. If u,v €H,, then (u-ﬁ}v-g)w 2 0.
Proof. {-u € H?w and v-V € H, and the conclusion is immediate.

Proof of Theorem 4.3. We wish to find ¢ which yields sup

cety"-{0]

1nfu£H1,A(u)=6{1-é(zp-(c,u)w/ﬂcuw)}, or since ¢ = 0, equivalently,

(4.5) sup 1nfu£H1 p(csu).

cent™-{0]
If -c ¢ H1, then consider u = -c. Since p{c,-c) = -1, we may omit

such ¢ from the supremum. Because H?w N (-H]) = (-H]) N §{u:g=03,

{(4.5) is equivalent to

(4.6) Sup_ceH]_{O}’fe___O infuﬁH] p(C,u) = —'infdeH]_{o}"a=O SuPufH-l p(d,p.).

We will solve for d and remember that c¢ = -d. Because of the continuity

of p(d,*), the supremum in the r.h.s. could also be taken over u £ H?U HO'

However, if u € aH], then applying Lemma 4.4, p(d,u) = 0 and so that

supremum could be restricted to u ¢ H? U (H0 ® qu) (for p(d,u) =0




[

R,
.'l....vr.‘-
£ PPN L N
PP
AL
PR PRI
PSR

YN
El

w
AR

,
PR .
A A
[ R N
-

R

-
’
,I

)

-" l" )
A
. '

'.-:'A:'J‘}. e

|l l;‘l;l;

N

"~y
3

39

for u € H?w). So, we seek d which solves

(4.7) (d,u).

inf _ _n Sup e
deH,-{0},d=0 ufH?u(HOCH;”)

Furthermore, if u € H’;w

© Hy, then Ew(p[ Hy) £ Hy and so A(Ew(p[ Hy))
. k _ oK

> 0. Applying (2.3) and the fact that Z;_, WiEw(pf Hl)i = 21’=1 Wik, We

see that 0< A(E | #)) = G | H)El, = (B, G| )iy = il = 86,

For fixed d € H]—{O} with =0, pldu) = ([dfl,-in-l )'](d,u)w

< (I{d}}w ]iu-ﬁl]w)'](d,Ew(u[ H1))W’ which is nonnegative by Lemma 4.4. So

p(d,u) < p(d,Ew(u[ H])) for u £ H’;l hy- Therefore, d solves

" gen, -{03,3=0 o) p(dEy(u L))

P
p.eHg)U(H
= TnfdeH]_{O}’a=0 SupueaH]_HO p(d"-‘)-

The boundary of Hy is the union of A1 = {x € Rk: Xy = XoS X3S ---sxk},

k k
Ay = {x €R xS X=Xz oS X dyreuA F {x €Rr PXpS s X 1T x g

Because of the convention p(d,0) = 0, we seek d that solves

(4.8) 1"fd€H]-{0},'5=0 "X gick-1 "X e, p(dsu).

Each Ai is a closed, convex cone in Rk containing the constant func-
tions and p(d,u) 2 0 for any p € Ai‘ So, by Corollary E, p. 320 of
Barlow et al. (1972), maxLleAi p(duu) = p(d,Ew(d ! A;)). It is easy to

show that d* = (d;,---,d:), with dg d; for # 1,i+1 and

d; = (wyditw, qde 1)/ (wetw, 1) for § o= 1,141, is the point in A,

closest to d € H

e, d* = Ew(d[ Ai). Also
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p(d,E (d] A))) = [E(d [ AD][/lldly- So d solves (4.8) if and only if

d/fidjiy solves

e, | dy=1,8=0 max e MEy(d LAy

However,  fidll, - IE, (4] AN, = Wi, (do,o-d) b ) = @ ,q-d.)%/a8

So, we wish to solve

) 2
(4.9) maxdEH],“d“w=1,HEO mingicr-1(di4y-d;)7/a

Let d] be defined as in the paragraph before the statement of the theorem

= = i ' = !
and let d, = ady. Note that d, €H,, d =0 and [d], - id

for all a > 0. So, choose a so that “da“w =1

i, >0

THW

We now show that the da chosen above is the unique solution to (4.9),

which implies that -dé is the unique, up to a positive multiplier, set of

contrast coefficients which is being sought. Note that if d = (d

a]’ a2’
2 2 2 .o e ke
-,dak), then (dai+1 - d ) a“ for 1 =1,2,---,k-1. Suppose
. ~ _ 2 2
z € Hy with z2 =0, [z[,=1 and ming_; . (2. -2 ) /ay = a”. Then,
(Zi+]' z.) =2 (da1+1 a1) or Zi+1'dai+1 2 Zi'da for i =1,2,-+°,k-1.

;
Hence, z-da € H] and applying Lemma 4.4,

1= 3G = e+ lz-d g+ 2(d;02-4,)

2
nw = ]+“z—da”w'

W

So, |lz-d hw =0 or z=d,. The proof is completed.

We conclude this section with some remarks concerning the power func-
tions of such contrast tests, that is, tests which reject for large values

of T.
c
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Theorem 4.5. Let p,v € R, If (c2v), = 0, then m (u+av) = m_(u)
» for all o €(-®,®), If (c,v)w >0 ((c,\.v)W < 0), then nc(u+o.v) is

.-, increasing (decreasing) in o with Hma_m nc(u+cw) =1 (0) and

- qu->-m nc(p.+a.v) =0 (1).

Proof. The result follows immediately from (4.2) since (c,u+o.v)w
o - .

-‘ = (CaH)w+Q(C9V)w'

._ In the next result the regions of consistency are determined for such j
contrast tests.

- Theorem 4.6. Let p,y € RS with y, >0 for i =1,2,---,k. Let
Z:‘E WoEmY and fix the level of the contrast test at p € (0,1) for all n.
f\

ZEZ: If (c,u)Y> 0 ((C,p.)Y< 6), then nc(p) =1 (0) as n—=> e, If

- (C,p)Y =0, then m (u) =p forall n.

:’ Proof. Since (c ’“)w /ch“w ]/z(c,u) /llc]] the desired conclusion
" follows from (4.2).

\, It is of interest to compare the regions of consistency for TO] and
T (0) in testing Hy versus H;-H,. We first show that c(o) € H?. Let
s c

g X; = si/s, for i =0,1,---,k and note that (cf. (4.1))

-~ (0) _ - 1/2 .
e ci = (glx;_1)-9(x;))/ (x5-%; ;) where g(x) = (x(1-x))"". The desired
:j:f;‘ conclusion follows from the strict concavity of g on [0,1]. Applying

®

g Theorem 4.6 the contrast test is consistent for u € A \c(o))

:'.'7 = {u: (c(o),u)w >0}, and from Corollary 3.2, thi} is true for TOl for
O w Mo H . If p= W ru” with w €N and uf € Hy, then

0.

» 0 0 0 .

::;:: (c( )’“)w = (c( ),uf )ws 0. So, ( ( )) (H] @HO) . Drawing

’

e, 8,
'y ‘0 s

f\ “.l ;u X "':'.'

»r L

.............
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W  (0)

Hys H] s C and A+(c(0)) for k =3 1in the plane =0 gives one |

an idea of the size of (H?NC>H0)C- A+(c(0)).

In testing H] versus H2, T (1) is consistent for u € A+(c(]))
C

£1) € H*w. If ué€ H], then (c(]),u)w <0 and y € (A+(c(])))c. Hence,
A+(c(])) < H?. Again one can obtain an idea of the size of H%-—A+(c(]))

by drawing the figure for k = 3.

|
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‘?} 5. COMMENTS. We begin this section with a few remarks about the situa-
t. tion in which the variances are unknown. Suppose Xij are independent

. n(ui,UZ) variables for j =1,2,---,n. and i =1,2,---,k with

2 unknown. For the contrast tests, let w. = n.

Ho= (Hysbpsteeaiy) and o i i

< and assume that ¢ does not depend on 02. Following the optimal procedure
for k=2, define &% =2, ): NEWRSS DZ/(N-K) with N=Zfn In
‘f- testing Hg versus H]-HO, we assume 21 =1 %;¢; = 0, and so if one
L rejects for large T’ = Z:.(ﬂ w.c.X;/G, then the 100p% critical value is

E::; ok p“c“w where F(tN-k,p) = 1-p with F the distribution function for
- a Students t variable with N-k degrees of freedom. In testing H,
.._ versus H,, we assume c € H’fw, and so  Hy is least favorable within H,.

Hence, the 100p% critical value is also t, | pllc“w. Let f(y) be the

density of Yn = 6/o. Conditioning on Y which is independent of

N’
_ X = (X,,X -,Yk), we see that the modified contrast test has power func-

(5.1)  mi(u) = 1-J”0°° ¢(yty_y,p (Com)y/ (eliclMF(y)dy

_ Hence, Theorem 4.5, which gives the radial monotonicity and radial limits

;?.:. of m., 1is also valid for n'c. Furthermore, if n, = ny, with y, >0

. for i=1,2,---,k, thenas n —=> =, Zli(ﬂ n1c1X1/[[c{[w ,/_Z =1Y5€; 1/“C“Y
: — to depending on whether (c,;.;)Y >0 or (C’“)Y < 0. Also

_-:S (&/c)tN-k,p >z So as n — o, n' (W) > 1 (0) as n —> = provided

' (c,;.;.)Y >0 ((c,u)Y < 0), and 7 (u) - p if (c,u)Y = 0. The radial
behavior and the regions of consistency for these modified contrast tests

are like those for the contrast tests.

The LRT for H, versus H]-H0 rejects for large values of |

0
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ok — a2k Mo a2 2
So1 = Li=y Myl T 0 Ly (X507 = 0% Tgy/8;

where ST is the total sum of squares (cf. Barlow et al. (1972), p. 121)).

Equivalently, one could reject for large values of L01 = (N'k)501/(]'501)‘

_vk M =2, ok — 2, ok — vy
But  Sp = Lyoy Dy (Kygmmg) ™+ 2y ()™ + 225 g nyGay0) (Kyug) . Apply-

ing (2.1) and the fact that Z$=] wiEw(x[ C)i = Z?zl W.X.;, we see that the
. ] k — a2k oM — 2
last sum is zero. Hence, L, = (N-K)Ij_; n,(u;=3)7/L5, Zﬁ=1(xij'“i) . We
now wish to determine the region of consistency for LO]’ Suppose that |
n, |
_ . . k i _—\2
n; = y; with Y, > 0. Noting that Zi=1 zﬁ=1(xij “i) / (N-k)

k -)2

n,
_ +k i Y e (N v _ . _
= Zi=1 Zj=1(xij Xi) /(N k)+-Zi=] ni(Xi My /(N-Kk), weksee that this expres

. 2 2
sion converges almost surely to o 4‘“u-Ey(u[ Hl)“y/‘i=] Y;. Under H,

(we may assume without loss of generality that u = 0), Z§=1 n.(ﬁ}—ﬁ)z

;
5 k

2=k k 2 .
c Zi=1 Yi(Ey(Y{ H1)i"zj=1 Yij/Zﬁ=] Yj) where Y],Y2,~--,Yk are inde-

pendent variables with Yi a'n(O,y;T). Hence, the 100p% critical value

for L converges to the 100p% critical value for T

01 01
Now suppose u € H;w @ H,. Examining the proof given in Barlow et al.

0
(1972) for their Theorem 3.4, we see that Z§=] "1(5}-ﬁ))2 2:3: 5 » and,
n

i — 2 .S. 2 ok
as we have seen, Z$=1 zﬁl](xij'“i) /(N-k) 232 02*‘Hu-EY(ul H])HY/21=1 Y;-

with weights Y;-

.i
Hence, L is consistent for such u. Furthermore, the argument given in

01
the second part of their proof shows that Z$=1 ni(ﬂ'i-ﬁ)2 2:5: 5 0 pro-

vided p € (H*w @&H )0. This is the same limiting behavior as was observed
1 0

for T01.
It is interesting to note that
L. o
01 Q+T]2

where Q is independent of TO] and T]Z' Recall from the introduction

I A e e e T T ' 0 5V S Y S A Y : ZJ
A b -. od Poin St ) e L L N N NhaXhNaR ,O m?;‘*.l".k_\Ai ‘)‘,A'.'e'}l
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that T is isotonic and T]2 is antitonic with respect to <. It fol-

01

I
lows that for fixed gq, P 0_. t] 1is isotonic with respect to <
i q+T'|2

and by conditioning that Pu[LOI > t] is isotonic with respect to <.

Thus, if u € H, then Péu[L01 > t] is nondecreasing for § € (-=,)

1
and Pu+6Ew(u[H])[LO1 > t] s nondecreasing for § € (-=,») for any

o€ Rk' What about directions like u+5Ew(ul H?) or for u € (-H?) U HO?

. o lEgeleg iy
It is easy to see that for fixed 9q >0, (x € R": > < t

is not convex (take g =t =1 and k = 3) so that the techniques of Sec-

tion 3 will not apply.

versus H, rejects for large values of

The LRT for H 2

1
512 © 2?:1 "1(Y7"Ei)2/[(N‘k)62+2|i(=1 "i(Yi'Ji)z]

(cf. Robertson and Wegman (1978)), or equivalently for large values of

k
i=1

2r 182,

Ly, = N-K)S ./ (1-8y,) =I5y 0y (X 0)%/8% = o1,

12

If we again denote the density of YN = §/o, by f(y), then, for a fixed

critical value, t > 0, the power function of L]2 is given by

() = {';’ PL Ty > VT yIf(y)dy.

Hence, Theorem 3.7, Corollary 3.8 and Corollary 2.11 are also valid for

It is not difficult to show that S is consistent for all u ¢ H1,

’
M2 12
as was the case for T12.

Because of the similarities we have observed between the case of

variances known and the case of variances unknown, one might conjecture

> IR I AT P YR LR R P
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DDA, AP ¢ )
A AR - 2%

i AN
Na e, ’-.I,.'l.':"'

P AP AP

RORET 2R

[
’

/ ".,‘v Qﬁ;‘

", "\.-'v‘-\-\ "\-'*- yr\- " ‘1 LSRN PSRN WS RN RS _.-_ -.. SN ‘-> EACRCA AR R TR
3 ot - A s A X v A o

that the monotonicity properties of L

01 are like those of TO]' However,

we have seen that some of the results do not follow from simple condition-

ing arguments as in the case of T12 and L It would be of interest to

12°
know what techniques could be applied in the study of the monotonicity of

the power function of LO]'

In deriving the optimal contrast test for H] versus H2, the vector
d1 was obtained. This vector, which in the case of equal weights has uni-

form increments (i.e., d d is constant), is in the center of the

1,i+1°

cone H]. In fact, d] makes equal angles with the faces of H

1,1
1 On the
other hand, the optimal conrast test of HO versus H]-H0 is based on

C(O)’ which is another center of H]. The vector C(O) makes equal
angles with the edges of H]. Bartholomew (1961) conjectured that, for
a fixed value of A, the power of T01 is largest at d]. It is of

interest to compare the power of T at both of the "centers" mentioned

0
above. Fixing their lengths to be 1 and k =5, d] = (-.6325,-.3162,0,

.3162,.6324) and C( ) = (-.6899,-.1551,0,.1551,.6899). For w =

0 €5
these powers were estimated by a Monte Carlo experiment with 9,999 repli-
cations. The estimates are n01(d]) = ,2374 and "O](C(O)) = .2339,
which tends to confirm Bartholomew's conjecture. What analytic tools are

needed to establish this conjecture?
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APPENDIX. The appendix contains the proofs that were omitted in Sections

2 and 3.

Proof of (2.4). It follows immediately from the definition of a dual

cone that C C:(C*)*. The other containment depends on the fact that C

is closed. Suppose x € (C*)* and x £C. Since C is closed,

ix-E(x | C){ > 0. But, x € (C*)* and x-E(x|C) € C* imply that

02 (x,x-E(x]C)) = [ix-E(x | C)%+ (E(x ] €),x-E(x ] €)) = [x-E(x] C)|%. This

contradiction shows that (C*)* < C.

Proof of Lemma 2.2. We first note that if E(x-u !Su) = bu, then
- = / / = - =
E(x “0' 94) b’ where b’ = bv0, and E(x “0' %J) E(x| %J). Hence,
E(x-uol gJ) = E(x | Cu) and so we establish (2.5) with uy = 0.
We consider the two cases w € C and -u € c* separately. Suppose
M €C and 0=b =<2, Using (2.3) followed by Lemma 2.1 and (2.3) again,

we see that
JEx-bE(x ] €)1 ) = fix-bE(x | € )% - lEECx-bE(x | € ) | €2
< [[x-bE(x | cu)nz- IE(x ] ¢*)}2
= 2+ bo-2)EC | €))7 - JE(x | €
< Ix|2- JE(x L )% = fE(x ] O],

If u€C", then -bE(x] C,) €C* forall b=0. Thus, by Lemma 2.1
and (2.4),

HE(x-bE(x [ € ) T O = fIE(x ] O]

for all b = 0,
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Proof of Lemma 2.3. Because of (2.3), ||[E(x+y[C){ can be written as

(A1) fIEE(x] C)+E(x [ C¥)+E(y [ C)+E(y [ C*) | O)]

= [E(E(x [ C)+E(y[ C)+z] C)]

where z = E(x[C*)+E(y[C*) € C*. Applying (2.4) and Lemma 2.1, (A.1) is
bounded above by [JE(E(x] C)+E(y[C)[C)] = |[E(x{C)+E(y]|C)||. The second

inequality in Lemma 2.3 follows from the triangular inequality for norms.

Proof of Lemma 2.4. The first conclusion of part (a) follows from the

third condition in (2.1) and the facts that -v € S whenever v € S and

S < C. For the second conclusion in part (a), we check the three conditions
in (2.1). Clearly, E(x]C)-v € C and (x-v-{E(x] C)-v),E(x]C)-v)

= (x-E(x] C),E(x] C))- (x-E(x]| C),v), where the first term on the r.h.s

is zero by (2.1) and the second term is zero because of the first part of
(a).

For part (b), we assume S 1is a closed subspace contained in C and
show that E(x|S) satisfies the three conditions that characterize the
projection of E(x|C) onto S. Of course, E(x|[S) €S,

(E(x | C)-E(x] $),E(x]S)) = (x-E(x] S),E(x| S))-(x-E(x] C),E(x]S)) = 0
(recall, E(x]|S),-E(x|[S) €SccC), and for u €S, (E(x|C)-E(x[S),u)
= (x-E(x] S),u)-(x-E(x| C),u) = 0 (again, u,-u €S c<C).

We prove part (d) before (c). So, we assume that C < S and again
verify the conditions in (2.1). By definition, E{(x[C) € C, and because
x-E(x|$) = E(x|s%), (E(x]S)-E(x[C).E(x]C)) = (x-E(x]C),E(x]C))

- (x=E(x [ S),E(x[C)) = -(E(x|S*),E(x[C)) =0 since C<S. For ye€C,
(E(x | $)-E(x[ C)sy) = (x-E(x] C),y) - (E(x| $T),y) = (x-E(x[C),y) < O.
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~§; For part (c), assume that S 1is a closed subspace contained in C.

_i, By part (a), E(x|C)-E(x|S) = E(x-E(x}s)tcC)=E(E(x]S")}C). By part
::ZT (a), for v €S, (E(E(x]|SY)|C)sv) = (E(x]S*),v) =0 and so,

\ E(E(x}S*)|c) € cns*. Hence, E(E(x[S*){C)=E(E(x]SY)]cnsS") and
the latter is E(x]|C n §*) by part (d).

o

Ef Proof of Lemma 2.9. For the proof of the first conclusion, we note
"- that x €(FC)*! <= (x,y) < 0 for all y € FC <> (x,Fz) < 0 for all

- z€Ce> (Flx,z), <0 forall zeCe>xerc™,

For the second conclusion, we show that FEw(x[ C) satisfies the three

v % et
: 2Tt
i £ 0

conditions that characterize E(Fx| FC) (cf. (2.1)). Llet y = Ew(x{ c).

4
~

Of course, Fy € FC, (Fx-Fy,Fy) = (x-y,y)w = 0. and for z € FC,

A '.\ o
Al L]

M

(Fx-Fy,z) = (x_y,F']z)w < 0 since F']z € C.
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